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Statistical Mechanics of Braided Markov Chains: 
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We investigate numerically and analytically the statistics of Markov chains on 
so-called braid (Bn) and locally free (5~ groups. Namely, we compute the 
mean length (r and the variance (/z 2) - ( / z )  2 of the shortest word which 
remains after applying of all group relations to the randomly generated N-letter 
word (Markov chain). We express the conjecture (numerically justified) that the 
mean value (i t)  for the random walk on the group Bn (n >> 1) coincides with 
high accuracy with the same value for the random walk on the "locally free 
group with errors" if the number of errors is of order of 20%. 

KEY WORDS: Random walk; braid group; graph of the group; primitive 
word; symbolic dynamics. 

I N T R O D U C T I O N  

Cons ide rab le  n u m b e r  of  works  is devo ted  to inves t iga t ion  of  the l iquid-  
c rys ta l l ine- type  phase  t rans i t ions  in systems of  long chain  molecules  (for 
review see for ins tance  refs. 1 and  2). Appa ren t ly ,  a t  present  the scope of  
p r o b l e m s  dea l ing  with  the nemat i c - type  o rde r ing  in po lymers  is one of  the 
mos t  examined  branches  of  s ta t is t ical  physics  of  macromolecu les .  However ,  
as far as we know,  all the existing theor ies  do  no t  t ake  into accoun t  the  
effects caused  b y  en tanglements  be tween the chains  in such systems. 

In  the presen t  w o r k  we deve lop  the basis  of  the s imple mean-f ie ld  
theo ry  of  o rde r ing  phase  t rans i t ion  i n  the sys tem of  en tang led  "d i rec ted  
po lymers , "  i.e., in the "b ra id"  of  f luctuat ing p o l y m e r  chains  wi th  fixed 
t o p o l o g y  in an  external  field. Let  us stress f rom very beginning  tha t  we do  
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not claim to find the new kind of phase transitions or to describe the new 
class of real physical systems. The main goal of our investigation concerns 
the construction of the mean-field-like theory of fluctuating entangled 
chains in 1 § 1 dimensions utilizing our knowledges elaborated in course of 
investigation of statistics of Markov chains on the braid and locally free 
groups. The forthcomming publication ~ (hereafter reffered as II) will be 
devoted to examination of the influence of topological constraints on the 
standard nematic-like phase transition in bunch of "braided polymers." 

Topological constraints essentially modify the physical properties of 
statistical systems consisting of chain-like objects of completely different 
nature. It should be said that topological problems are widely investigated 
in connection with quantum field and string theories, 2D-gravitation, 
statistics of vortices in superconductors, quantum Hall effect, thermo- 
dynamic properties of entangled polymers etc. Modern methods of 
theoretical physics allow us to describe rather comprehensively the effects 
of nonabelian statistics on physical behavior for each particular referred 
system; however, in our opinion, the following general question remain 
obscure: 

(a) How does the changes in topological state of the system of 
entangled chain-like objects effect their physical properties? 

(b) How can the knowledge accrued in statistical topology be 
applied to the construction of the Ginzburg-Landau-type theory of fluc- 
tuating entangled (nonabelian) chain-like objects? 

In order to have representative and physically clear image for the 
system of fluctuating chains with the full range of nonabelian topological 
properties it appears quite natural to formulate general topological 
problems in terms of polymer physics. It allows us: (i) to use a geometri- 
cally clear image of polymer with topological constraints as a model corre- 
sponding to the path integral formalism in the field theory; (ii) to advance 
in investigation of specific physical properties of biological and synthetical 
polymer systems where the topological constraints play a significant role. 

This paper mainly concerns the general problems dealing with the 
topological properties of polymers represented as Brownian trajectories. 
The connection between topology and detailed chemical structure of 
polymers as well as the statistical properties of macromolecules caused by 
their specific chemical structure are beyond the scope of the present book. 

For physicists the polymer objects are attractive due to many reasons. 
First of all, the adjoining of monomer units in chains essentially reduces all 
equilibrium and dynamic properties of the system under consideration. 
Moreover, due to that adjoining the behavior of polymers is determined by 
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the space-time scales larger than for low-molecular-weight substances. This 
allows us to apply general theoretical methods such as perturbation theory, 
renormalization-group approach, conformal methods etc. to the investiga- 
tion of polymer systems consisting of both ensemble of chains and a single 
macromolecule. Major progress in theoretical description of polymer 
systems is due to the combination of general methods of solid-state physics 
with the methods which take into account the chain-like structure of 
polymers. The chain-like structure of macromolecules causes the following 
peculiarities (see, for instance, ref. 4): (i) the so-called "linear memory" (i.e., 
fixed position of each monomer unit along the chain); (ii) the low transla- 
tional entropy (i.e., the restrictions on independent motion of monomer 
units due to the presence of bonds); (iii) the large space fluctuations (i.e., 
just a single macromolecule can be regarded as a statistical system with 
many degrees of freedom). 

It should be emphasized that the above mentioned "linear memory" 
leads to the fact that different parts of polymer molecules fluctuating in 
space can not go one through another without the chain rupture. For the 
system of non-phantom closed chains this means that only those chain con- 
formations are available which can be transformed continuously into one 
another: 

what inevitably give rise to the problem of knot entropy determination/s~ 
After these preliminary remarks it becomes clear that many general 

(noncommutative) topological problems dealing with statistics of chain-like 
objects can be formulated easily in polymer language. 

Thus, the reason of our investigations is forced by real topological 
problems which we are going to describe in more details in the part II of 
the work. Here let us just mention that the scope of tasks dealing with the 
nematic-type ordering in bunches of entangled polymers as well as considera- 
tion of thermodynamic properties of uncrossible vortex lines immediately 
turn us to studying of statistics of chain-like objects with nonabelian 
topology. 

Problems dealing with the limit distributions of random walks on 
some noncommutative groups is represented rather widely in the probabil- 
ity theory. Namely, the set of rigorous results concerning the limit behavior 
of Markov chains on the free group and on the Riemann surfaces of con- 
stant negative curvature have been received in works; (6-9) the problem of 
construction of the probability measure for random walks on the modular 
group PSL(2, 7/) has been studied in ref. 10. To this theme we could 
attribute also number of spectral problems considered in the theory of 
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dynamic systems on hyperbolic manifolds <11.12) as well as the subject of the 
random matrix theory. <13> 

However in the context of "topologically-probabilistic" consideration, 
the limit distributions of noncommutative random walks are practically out 
of discussion except very few specific cases. <14 16) In particular, in these 
works it has been shown that statistics of random walks with fixed 
topological state with respect to the regular array of obstacles on the plane 
can be obtained from the limit distributions of the so-called "brownian 
bridges" (see the definition below) on the universal covering--the graph 
with topology of the Cayley tree. The analytic construction of the non- 
abelian topological invariants for the trajectories on the double punctured 
plane and statistics of simplest nontrivial random braid B3 was shortly 
discussed in ref. 17. 

Our main goal of the present work is as follows: we consider analyti- 
cally and numerically the limit behavior of the Markov chains where the 
states are randomly taken from some noncommutative finite discrete group 
deeply related to topology. In particular, we restrict ourselves with the so- 
called braid (Bn) and locally free 3 (5 (~ , , )  groups--see the definitions in the 
next section. The first brief combinatorial analysis of locally free groups 
was undertaken in recent works. (9) 

1. BASIC  D E F I N I T I O N S  A N D  M O D E L  

1.1. R a n d o m  Walks  over Group  E lements  

We begin with the investigation of the probabilistic properties of 
Markov chains on simplest noncommutative groups. In the most general 
way the problem can be formulated as follows. 

Take a discrete group f~ with fixed finite number of generators 
{gl,..., gn l}. Any arbitrary ordered sequence of generators we call the 
word. The length of the word, N, is the total number of used generators 
("letters"), whereas the minimal irreducible length, p, called below the 
"primitive word" is the shortest noncontractible length of a particular word 
which remains after applying of all possible group relations. 

Let v be the uniform distribution on the set {gl ..... gn-  1, g l  1 . . . . .  g~-i 1}. 
For  convenience we take h /=  gi for j = i  and h / - g  1 for j - i + n - 1 ;  
v(h/) = 1 /2n-  2 for any j. We construct the (right-hand) random walk (the 
random word) on fgn with a transition measure, v, i.e., {(,,}; ~0 = e e ~n and 
Prob(~/= u[~/_ 1 = v) = v(v-lu) = 1/2n - 2. It means that with the probability 

3 The notation "locally free group" is proposed by A. M. Vershik. 
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1/2n - 2 we add the element h~ N to the given word h N 1 = h~, h~... h~u_ i  from 
the right-hand side. 4 

The random word W formed by N letters taken independently with 
the uniform probabili ty distribution v = 1/2n- 2 from the set {gl ,..., g , - l ,  
g ~ l  ..... g~--~l} is called the Markov chain of length N on the group f#,. 

The most  attention is paid in this paper  to the following question: 
What  is the number  of  possibilities, Z(/t, N), to reduce all N-letter words 
to the primitive word of length ~t. The quantity Z(/~, N) plays a role of  the 
partition function for the random walk on the group f#, with the uniform 
probabili ty distribution v over group generators. 

1.2. Braid and "Loca l ly  F ree"  Groups  

We are aimed to study the asymptotics of the limit distributions of 
Markov  chains on the braid group B, .  For  the case n -- 3 the problem has 
been solved in ref. 9, where the limit probabil i ty distribution as well as the 
conditional limit probabili ty distribution of "brownian bridges" on the 
group B 3 has been derived. For  n > 3 this problem is unsolved yet. However  

we can extract some estimations for the limit behavior of Markov  chains on 
B, considering the random walks on so-called "locally free groups. ''(7' 9) 

Braid G r o u p .  The braid group B, of n strings has n -  1 generators 
{a~, o-2,... , cr,, 1} with the following relations: 

(~i(Ti+lai=l~i+l(~iai+l ( l ~ < i < n - - 1 )  

aiaj=a~ai ( [ i - -J l  >/2) (1) 

Gi(~Z 1 =(7 i l  ~Ti=e 

Let us mention that: 

- -  The word written in terms of "let ters"--generators  from the set 
{a~ ..... a , - 1 ,  ~ ..... a ,  ll} gives a particular braid--see Fig. la. 

- -  The closed braid appears after gluing the "upper" and the "lower" 
free ends of the braid on the cylinder (Fig. lb). 

- -  Any braid corresponds to some knot  or link. So, there is a prin- 
cipal possibility to use the braid group representation for the construction 
of topological invariants of knots and links, but the correspondence of 
braids and knots is not mutually single valued and each knot  or link can 
be represented by infinite series of different braids. This fact should be 
taken into account in course of the knot  invariants construction. 

4 Analogously we can construct the left-hand side random walk on the group f~. 
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(a) Geometric representation of generators a i ("positive") and a~  1 ("negative") in the 
group B.;  (b) Schematic representation of a particular braid of N generators. 

Locally Free Group. The group ~ a ~ ( d )  is called the locally free 
if generators, {f~ ..... f , _  ~} obey the following commutation relations: 

(a) Each pair (fj, fk) generates the free subgroup of the group ~ e ~  
if [ j -  k[ < d; 

(b) f,.f~ = fk f j  for IJ - kl t> d 

We pay the most attention to the case d = 2  for which we define 
L#~(2) - 5 ~  

It can be seen that the only one difference between the braid and 
locally free groups consists in the replacement of the Yang-Baxter relations 
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Fig. 2. Vertices corresponding to the words J2f5 and fsf2 should be glued because they 
represent one and the same word in the group ~ ,a~  +1. 

(in case of B,,) by relations of the free group (in case of ~ ) .  In Fig. 2 the 
graph C ( ~ )  corresponding to the group ~ is shown schematically 
where the vertices corresponding to the equivalent primitive words should 
be identified. (Two words are equivalent if they can be transformed into 
one another by permutations allowed in by the definition of the group). 

2. STATISTICS OF R A N D O M  WALKS ON BRAID AND 
LOCALLY FREE GROUPS 

It has been shown in papers (14~ that for the free group (i.e., for the 
group without any commutation relations among generators) the problem 
about the limit distribution of Markov chains can be mapped to the 
investigation of random walks on a simply connected tree. In case of braids 
the more complicated group structure does not allow us to use the simple 
geometrical image directly. Nevertheless the problem of the limit distribu- 
tion of random walks off B, can be reduced to the consideration of the 
random walk on some graph. In the case of the group B3 we are able to 
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construct this graph evidently, while for the group B, (n >/4) we can give 
an estimation for the limit distribution of random walks considering the 
statistics of Markov chains on so-called local groups (see ref. 9 and below). 

2.1 .  N u m e r i c a l  R e s u l t s  

The goal of our numerical computations consists in comparison of the 
expectation values for the random walk on braid group B, and on locally 
free group ~ (see the definitions above). 

We believe that our results will give some insight to the problem of 
random walk in the noncommutative groups related to topology (like 
braid group) and will stimulate the forthcomming investigations. The 
reason of the replacement of the braid group by the locally free one is due 
to the fact that the problem of limit distribution of Markov chains on 
locally free group admits the exact consideration (see also Section 3). 

The model used for numerical simulations has been explained in Sec- 
tion 1.2. Let us point out the main steps of our computations: 

(a) We generate randomly (with uniform probability distribution) 
the words of lengths N~ [ 1000; 20000], while the number of generators, n, 
varies in the interval [3; 200]. The number of randomly generated words 
is of order of 1000. 

(b) We reduce the given word till the minimal irreducible (primitive) 
word. This can be done by using the braid (or locally free) group relations. 
The numerical procedure is as follows. First, we try to push each braid gen- 
erator in the word as far as possible to the left. Some reductions can occur 
after that. Then, we play the same game but in the opposite direction, 
pushing each braid generator to the right performing possible reductions of 
the word, then--to the left again and so on .... If no reductions occur during 
two consecutive steps, we stop the process. 

We compute the following quantities for braid and locally free groups: 
The mean length of the shortest (primitive) word (/x) 

</~> _ ~ 2  0/2Z(/~, N) (2) 
Zu~ 0 Z(/2, N) 

and the variance Var(/l) 

oo 2 
Var( /~)  (/A 2 )  ( /A)  2 Z~=0/~ Z(/~, N) 

_ _ _ ( ~ ) 2  ( 3 )  

Z ~ = 0 Z(/~, N) 

The results of numerical simulations for the word statistics on braid 
(B,) and locally free (Se~(d)) groups are presented in the Table 1. 
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B, 5e~,,(2) 5 q ~ ( 3 )  ~ a ~ ( 4 )  

( /~) Var(/~) ( p )  Var(/~) ( ,u)  Var(/0 ( p )  Var(/~) 
Groups 

N N N N N N N N 

n = 3 0.29 0.85 0.50 0.76 0.50 0.76 0.50 0.75 

n = 5 0.49 0.77 0.60 0.63 0.71 0.48 0.75 0.46 

n = 10 0.56 0.63 0.65 0.56 0.77 0.40 0.82 0.34 
n = 20 0.59 0.63 0.66 0.54 0.79 0.39 0.84 0.29 

n = 50 0.61 0.61 0.67 0.56 0.80 0.38 0.85 0.27 
n = 100 0.61 0.61 0.67 0.52 0.80 0.36 0.86 0.26 
n = 200 0.61 0.60 0.67 0.53 0.80 0.35 0.86 0.26 

"The  groups L - ~ ( d )  are completely free when d~> n -  1. 

The maximal standard deviations in the Table 1 (and everywhere 
below) are: 

_+0.01 for the mean value ( /~) /N 

_+ 0.05 for the variance Var(/~)/N 

2.2. Analyt ic  Results for  Random Walks  on Locally Free Group 

Let us estimate now the quantities ( l~) /N and Var(/t)/N analytically. 
We present below two different approaches called "dynamical" and 
"statistical." The "dynamical" approach is based on simple estimation of 
the probability to reduce the primitive word by random adding one extra 
letter. The estimate obtained by this method is in very good agreement with 
corresponding numerical simulations. However the "statistical" approach 
dealing with rigorous enumeration of all nonequivalent primitive words in 
the locally free group 5~  leads to another answer. The rest of this 
section is devoted to the explanation of the above-mentioned discrepancy. 

Dynamical  Considerat ion.  Under the conditions 

n ~ l  

N ~ n  2 (4) 

we can easily develop the dynamical arguments which are in rather good 
agreement with the results of numerical simulations presented above. The 
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last inequality in ref. 4 ensures the conditions, sufficient for finding the limit 
probability distribution of Markov chains on the groups of n generators. 
Actually, the number of letters in the word, N should be much larger that 
the number of all possible pairs in the set of 2n letters. 5 Only in this case 
the corresponding Markov process has the reliable distribution function. 
The number of pairs is of order 4n 2, so we arrived at the inequality stated 
in ref. 4. 

Take a randomly generated N-letter word W. This word is charac- 
terized by the length of the primitive word Wp (recall that Wp is the length 
of the word W obtained after all possible contractions allowed by the struc- 
ture of the group Y~ 

Let us compute the probability re(d) of the fact that the primitive word 
Wp will be shortened in one letter after adding of the letter f~(i e [ 1, n] ) to 
the word W from the right-hand side. It is easy to understand that the 
primitive word Wp can be reduced if: 

(a) The last letter in the word Wp is just f / - l .  The probability of 
such event is I/2n; 

(b) The letter before the last in the word Wp i s f i  1 and the last letter 
commutes with the letter f/. The probability of such event is 1 / 2 n ( 1 -  
( 4 d -  2)/2n); 

(c) The third letter from the right end of the word Wp is f 7 1  and 
two last letters commute with the letter f,.. The probability of such event is 
1/2n(1 - ( 4 d -  2)/2n)2; 

(d) ... and so on. 

Finally we arrive at the following expression for the probability zc(d): 

7 1 
~(d) =2nn 1 (5) 1= 0 2n 4 d -  2 

The procedure described above assumes that the letters remaining in 
the word Wp are uniformly distributed--as in the initial (nonreduced word 
W). The absence of "boundary effects" is ensured by the condition (4). 

Once having the probability re(d), we can write down the master equa- 
tion for the probability P(/~, N) of the fact that in randomly generated 
N-letter word the primitive path has the length r 

P(lz, N+l)=(1-zc(d))P(lt-l,N)+zc(d)P(l~+l,N) (/~ >~ 2) (6) 

5 The total number of generators is 2n because each of n generators has the inverse one. 
6 Our consideration is valid for any values of d. 
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where the relation between P(p, N) and the partition function Z(p, N) 
introduced above is as follows 

P ( a , N ) -  
Z(B,N) 

Z~,~=o Z( v, N) 

The recursion relation (6) coincides with the equation describing the 
random walk on the halfline with the drift from the origin or, what is the 
same, with the equation describing the random walk on the simply Cayley 
tree with the coordination number 

1 
= 4 d -  2 (7)  zeff- n( d) 

Taking into account the last analogy we can complete the Eq. (6) by the 
boundary conditions 

P(,u = 1, N +  1 ) = P ( p  =0,  N) + re(d) P(p =2,  N) 

P(~ = O, N + 1 ) = ~rP(/z = 1, N) (8) 

P(p,N= O) = fi.,o 

It is noteworthy that these equations are written just for the Cayley tree 
with Zen-branches. The actual structure of the graph corresponding to the 
group 5~ is much more complex, thus Eqs. (8) should be regarded as 
an approximation. However the exact form of boundary conditions does 
not influence the asymptotic solution of Eq. (6) in vicinity of the maximum 
of the distribution function: 

( )2} 
1 exp ~ - z2ff Zeff-- 2 N (9) 

P(/~, N) - 2 ~/2~(z~n-- 1) N ( 8(zeff- 1) N /t Zeff 

Thus, we find 

(/~(d)) _ Z e f f - - 2  2 d - 2  
z~ff 2 d -  1 

Var(kt, d) 4(zr 1) 4 d -  3 
N - Zeff2 ( 2 d -  1 )2 

(10) 
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Substituting in Eq. (10) d =  2, 3, 4, we get the following numerical values: 

(/2(d)) 2 Var(F,d) 5 
for d = 2  

N 3; N 9 

(_((d)__=_.) 4 Var(/t,d) 9 for d = 3  
N 5' N - 25 

(/t(d)~ 6 Var(/L,d) 13 
for d = 4  

N =7;  N - 4 9  

what is in the excellent agreement with the asymptotic values (n >> 1 ) from 
the Table 1 for the same groups. 

Statistical Consideration. For the group 5q~+~(d) we can 
extract the limit behavior of the distribution function P(kt, N) exactly 
evaluating the number V,(/t, d) of all nonequivalent primitive words of 
length/t in the group 5 r  l(d). We derive the explicit expression for the 
function V,(/t, d) and show that it has the following asymptotics for d = 2 
and/t  >> 1 

(-8~ 2') ~ (n>>l) (11) V.(/t, d =  2) = const 7 n2 j 

To compute V.(it, d) we represent each primitive word Wp of length 
/t in the group ~ + t(d) in the normal order similar to so-called "symbolic 
dynamics" used in consideration of chaotic systems (see, for instance, 
ref. 18) 

Wp = (f~,)m, (f~2)m2... (f~,)m s (12) 

where Y'.~'=~ [mi[ =/~ (mr # 0  Vi; 1 ~<s~</t) and the sequence of generators 
f~, in Eq. (12) for all distinct f~,, satisfies the following local rules in ref. 9: 

(i) I f L = f l ,  thenf~,+,E{A, f3,.. . ,L}; 

(ii) Iff~=f~(l<k<<.n-1),thenf~,+,~{fk J+l,...,fk 1,f,+, ..... f,,}; 

(iii) I f L , = f ~ ,  thenL,+ E { L _ a + ,  ..... f~ 1}. 

These local rules give the prescription how to encode and enumerate 
all distinct primitive words in the group ~ , , , +  ~(d). If the sequence of 
generators in the primitive word Wp does not satisfy the rules (i)-(iii), we 
commute the generators in the word Wp up the normal order is restored. 
Hence, the normal order representation enables one to give the unique 
coding of all nonequivalent primitive words in the group L ~  + l(d). 
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E x a m p l e  1. Take an arbitrary primitive word of length kt = 10 in 
the group s 

Wp= f ~l f 3 f s f  ~-' f 2 f 4 f s f 8 f 4 f 7  (13) 

To represent the word Wp in the "normal order" we have to push all gener- 
ators with smaller indices to the left when it is allowed by the commutation 
relations of the locally free group 5r We get: 

w~ = (A) 1 (A)~ (A) '  ( f~) - '  (A) ~ (A) ~ (f~)' (14) 

(the "normal order" for this word is the sequence of used generators: 
{ 1, 3, 2, 5, 4, 8, 7} ). To compute the number of different primitive words of 
length ~ = 10 with the same normal order as in Eq. (14), we have to sum 
up all the words like 

Wp = (f~)"~' (f3) '~2 ( fz)  m3 ( fs)  m4 (f4) m5 (f~) m6 (fT) m7 (15) 

under the condition ~2~=1 Im~l = 10; m~#0 Vm~e [1, 7]. 
The calculation of the number of distinct primitive words, V,(/x), of 

the given length/t  is now rather straightforward: 

Vn(It, d) = ~" Rn(s, d) ~ '  A ]rail--/~ (16) 
x =  1 { m  I ,. . . ,  m s }  i = 1 

where R,(s,  d) is the number of all distinct sequences of s generators taken 
from the set {fl,---, f ,}  and satisfying the local rules (i)-(iii) while the 
second sum gives the number of all possible representations of the primitive 
path of length/z for the fixed sequence of generators--(see the example 
above); "prime" means that the sum runs over all rni ~ 0 for 1 <~ i ~ s; A is 
the Kronecker function. 

To get the partition function R,(s, d) let us mention that the local 
rules (i)-(iii) define the generalized Markov chain with the states given by 
the n • n "coincidence" matrix ~ ( d )  where the rows and columns corre- 
spond to the generators f l  ,--., f ,  as it is shown below: 

~'.(a) = 

f~ A A A ... f.-1 f. 
f l  0 1 1 1 . . .  1 1 

f2 1 0 I 1 . . .  1 I 

fa i 1 0 1 . . ,  1 1 

f4 0 I I 0 . . .  1 I 

f . _ ,  0 0 0 0 "'. 0 1 

f ,  0 0 0 0 1 0 

(17) 
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The matrix T,(d) has rather simple structure: above the diagonal we 
put everywhere "1" and below diagonal we have d -  1 subdiagonals com- 
pletely filled by "1"; in all other places we have "0" (in Eq. (17) it is shown 
the case with d = 3). 

The number of all distinct normally ordered sequences of words of 
length s with allowed commutation relations is given by the following 
partition function 

Rn(s, d) = u #n(d) ]" u (18) 

where 

n 

Vin=(1 1 1 . . . 1 )  

())1 
and rout = 1 n (19) 

1 
The remaining sum in Eq. (16) is independent on R,(s, d), so its 

calculation is trivial: 

Y" A I ~  Imi[-/2] =2" (/2-1)! (20) 
{ m  I . . . . . .  ,,} i = l  (S-- 1)! (/2--s)! 

Substituting Eq. (20) and Eq. (18) into Eq. (16) we get 

/z 

Vn(/2, d)=2n+ ~ 2 s ( p - l ) !  R,,(s,d) (21) 
,=,  ( s -  1)! ( /2 - s ) !  

The value V~(/2, d) is growing exponentially fast with /2 and the 
"speed" of this grows is clearly represented by the fraction 

V,,(/2 + 1), d) 
q ( a )  = (22) 

We can find the closed asymptotic expression for the value q(d) 
supposing that the main contribution in Eq. (21) appears from s >> 1. In this 
case we have for R,,(s, d): 

Rn(s, d)l,>~ = [)lnmax(d)] s 

where 2n max is the highest eigenvalue of the matrix ~Pn(d)(n >> 1 ). 

(23) 
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In the two limiting cases d = 2(n >> 1 ) and d = n - 1 (n is arbitrary) the 
computations are rather straightforward: 

(a) For  d =  2 (see Appendix A for more details) we find the value of 
m a x  2 the highest eigenvalue 2 n ( ) (n > 1) in the form 

4zc 2 ( 1 )  
2max(2)ln> 1 = 3 - -~5  - + ~  ~5 

(b) F o r d = n - 1  we get 

2m"x(n) = n - 1 

(24) 

(25) 

Example 2. For n---3 and d =  2 we have the free group without 
any commutation relations, i.e., the Cayley tree with 2(n - 1 ) = 4 branches. 

Substituting Eqs. (24)-(25) into Eq. (21) and evaluating the remaining 
sums over s we obtain 

8zc 2 

q(2) ~ 7 n2 (26) 

q ( n )  = 2n  - -  1 

Let us pay attention to the geometric sense of Eq. (26). First of all 
recall that the complete free group F , , = S f ~ + ~ ( d = n - 1 )  (without any 
commutation relations between the generators) has the structure of 
z-branching Cayley, where 

z = q ( n )  + 1 = 2 n  

what coincides with the well known result that the number of distinct 
primitive words of length/~ in the group Fn grows like 

2n 
V , , ( p , d = n ) = [ q ( n ) + l ] [ q ( n ) ]  ~' ~ = - -  ( 2 n -  1) ~ (27) 

2 n -  1 

Comparing Eqs. (11) and (27) we can conclude that the graph corre- 
sponding to the locally free group, ~ , , , +  1(2), can be effectively regarded 
as z-branching Cayley tree, where 

87~ 2 
zl,,>l _~ q(2) + 1 = 8 n2 (28) 

Despite the local structure of the group s is very complex, 
Eq. (28) enables us to find the asymptotics of the distribution function 
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Table2a. Groups { n > > v >  1) 

z~n- ( l ~ ) / N  Var( ,u ) /N z ( u ) / N  Var( /~) /N zoo ,. (see Eq.  (33))  

n = 20 6 0.67 0.56 7.8 0.74 0.45 6 

n = 50 6 0.67 0.56 7.9 0.75 0.44 6 

n = 100 6 0.67 0.56 8 0.75 0.44 6 

Pd(/~, N) for the random walk on the group in the same way as it was 
described in course of derivation of Eq. (9). Thus, to find the expectation 
values ( l ~ ( d ) ) / N  and Var(/~, d) /N  we have to replace zest by the value 
z = q(d) + 1. Hence, we get 

( a ( d ) )  z - - 2  

N z 

Var(g, d) 4 ( z -  1) 
N - z 2 

(29) 

In the Tables 2a, b we compare the values of Zen-with the values 
z =  q(d)+ 1 and Zoo r as well as corresponding expectation values ( /z(d))  
and Var(/~, d) for the groups ~ e ~ +  1(2) and 5 ~  t(3) extracted from our 
analytical results for n >> 1. 

We pay attention to the fact that the expectation values computed on 
the basis of dynamical consideration do not coincide with the values com- 
puted from the enumeration of all nonequivalent primitive words in the 
corresponding group. Some arguments concerning the ways of possible 
resolution of this contradiction we present below. 

W h y  the  coord ina t iona l  numbers  Zef f and z are d i f fe rent?  
The natural question appears now: which Eq.--(7)  or (28)--is correct.. ,  or 

Table2b.  G r o u p ~ ( 3 )  (n > 1) 

Zeff ( , u ) / N  Var( / z ) /N  z ( I z ) / N  V a r ( # ) / N  Zcor (see Eq.  (33))  

n = 20 10 0.8 0.36 12.5 0.84 0.29 10.l 

n = 50 10 0.8 0.36 12.5 0.84 0.29 10.1 

n = 100 10 0.8 0.36 12.5 0.84 0.29 10.1 
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both are wrong? Our opinion is that the answer should be: "both Eqs. (7) 
and (28) have sense depending on the problem under considerations." Let 
us try to explain what we mean. 

Before going into details, it would be worthwhile to mention that the 
problem of random walk on the locally free group has some features of 
random walks in disordered materials. It is well known that the expecta- 
tion values of a dynamic process in disordered system cannot be computed 
form equilibrium enumeration of all states of the given phase space, 
because some states are almost inaccessible during the time of the process. 

We believe that the same is happened in our system: the local trans- 
ition probabilities of the random walk on the graph C(Se~) are related to 
the effective coordinational number of the graph C(Se~) and depend on 
the way of consideration of the system: in "dynamical" approach we 
automatically count all accessible states (vertices of the graph) with 
appropriate weights computed along the true phase trajectories of the 
walker on the graph, while in "equilibrium" consideration we have many 
extra states because some enumerated vertices are "dynamically" almost 
inaccessible for the random walk (as it is explained below) for finite times 
of the process. 

The computations of the expectation values for the random walk on 
the graph of the group 5e~, based on the exact enumeration of all 
primitive words imply (unevidently) the supposition that this target graph 
is symmetric. In other words, we supposed, without saying that clearly, 
that the number of ~-letter primitive words finishing by the generator with 
the number i is independent (or, at last, weakly dependent) on i. Only 
under such supposition the expectation values for the random walk on the 
graph can be computed on the basis of effective coordinational number 
z = q (d )  + 1 (see Eq. (22)). 

However, as it is shown below, only a small fraction of generators 
contribute to the main part of graph vertices. We can simply elucidate that 
computing the "correlation function" G n ( i i d )  which represents the portion 
of the primitive words of length is/~(kt ~ ~ )  starting with arbitrary letter 
and ending with the letter i (i E [ 1, n]). We have: 

Gn(iid) = l im V.,(#, i, d)  (30) 
. ~ co V.(~,  d)  

where 

" ( u -  1)! 
V.(~,i,d)=2n+ Z 2s vi.[ T.(d)]s rout(i) (31) 

~,=, ( s - l ) !  ( ~ - s ) !  
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and 

(i) u  = (1 1. . .  1) and Vout(i ) = (32) 

(compare to Eqs. (18)-(21)). It is obvious that the following normalization 
condition is fulfilled: 

Vn(p, d) = ~ Vn(/~, i, d) 
i = 1  

The results of calculations of the function GnU[ d) for n = 4, 10, 20 are 
shown in the Fig. 3a-c ( d = 2 )  and for n =7,  10, 20--in the Fig. 4a-c 
( d =  3). It can be easily seen that only about 4 generators (for d =  2) and 
7 (for d =  3) give the main contribution to the ensemble of all primitive 
words of given length. Hence, our conjecture is as follows. 

Conjecture 1. The coordinational number Zoo r which governs the 
random walk on the graph of the group ~ ( d )  should be extracted from 
the group ~cfff4 for d = 2 and from the group ~'r for d = 3. In these cases 
only the corresponding graphs are almost symmetric, i.e., the distribution 
of words ending by the letter with the number i (i~ [1 ,4]  for d = 2  and 
i ~ [ 1, 7 ] for d = 3) is almost independent on i. 

The computation of the corresponding effective coordinational number 
Zoo ~ using Eq. (22) gives us 

Zcor = 6 for d = 2  
(33) 

Zcor = 10.1 for d = 3  

Of course, our consideration is rather crude and still is not supported 
by extended investigation of the structure of the graph of the locally free 
group. However we believe that the mentioned deviations between dynami- 
cal and statistical approaches reflect some nonergodic properties of random 
walk on the locally free group. 

3. STATISTICAL APPROACH FOR WORDS E N U M E R A T I O N  IN 
BRAID GROUP B N 

The problem of construction of an effective algorithm for enumeration 
of the words in the braid group B. for n > 2 is one of very intriguing 
problems of the group theory. 
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In the present section we propose the approximate statistical approach 
for enumeration of all distinct primitive words in the group B, for n >> 1 
which exploits some properties of locally free groups 5 r  considered 
above. 

The main idea is as follows. Take a look on the sequences of words 
in the braid group B,  from the point of view of the locally free group 
L P ~  "with errors." To be more specific let us start with the following 
example: 

Example 3. Write a random word W from the group B 7 consisting 
of 8 letters. Let it be for example: 

W =  00 1 1 0 0 4 0 0 5  1 0 0 6  1 005 00 1 0 0 6 0 0 2  1 

We reduce this word to the primitive one in two steps. 

1. On the first step we act in the same way as in the case of locally 
free group Leon7 and push all generators with smaller indices to the left sup- 
posing that nearest neighbors do not commute at all. We get: 

w r e d u c e d  = 0.  2 1 0 . 4 0 . 5  1 0.6-- 1 0.5 0 .6  

I o-5o'6o- 5 

2. Now we can apply the Yang-Baxter relations for the triple 
00610050"6 and obtain after the cancellation of 0-~-1 and 005 the primitive 
word 

Wp = 0 0 2  1 0 4 0 0 6 0 5  1 

The first step of the contraction procedure completely coincides with 
what we have for the locally free group, while the second step we can 
regard (approximately, of course) as follows. If we have some pair, for 
instance, 0-610-5, we can commute it i f  the nearest neighbor generator after 
o-5 is 006. The probability to meet the generator 00i in the Markov chain for 
the braid group B, is of order of Pert = 1/2n. Later on we consider more 
general case taking Per~ as the variational parameter. 

In the Table 3 we show the results of our numerical simulations of the 
expectation value ( Ix ) /N  for the random walk on the "locally free group 

o~'err  with errors," L,e~,  (2), and compare them to the same value for the 
random walk on the braid group (see first columns of the Table 1). 

We found asymptotically the perfect correspondence of the mean 
values ( l z ) / N  for the braid group and the "locally free group with the 
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Table 3 

e r r  ~ with 2 0 %  of  er rors  [ p ~ =  1/5] B. 
G r o u p s  ( p ) /N  ( p ) / N  

n = 5 0.55 0.49 

n = 10 0.58 0.56 

n = 20 0.59 0.59 

n = 50 0.60 0.61 

n = 100 0.60 0.61 

n = 200 0.61 0.61 

errors" for Porr = �89 However the variance Var(/~) for the random walk on 
~ "  er r  the group 5 g ~ .  has the following scaling behavior 

Var(/~ ) ~ N 2 v(. ) ( 3 4) 

er r  with �89 v(n)< 1. The growth of the variance for the group ~- .  we 
explain by the additional randomness produced by the "errors." 

Thus we put forward the following conjecture: 

C o n j e c t u r e  2. The number of nonequivalent primitive words 
V~raid(p) of length/1 in the braid group Bn can be estimated as follows 

v b r a i d r  , t f l ) ' ~ ( V , ( f l ,  d = 2 ,  Perr) ( 3 5 )  

where V,(p, d =  2, Perr) is the number of all distinct primitive words of 
length p in the locally free group ~ ( 2 )  "with errors" (we allow to com- 

_ ~ l ~  mute the neighboring generators with the probability Perr ~) and the 
averaging is performed over the uniform probability distribution of "errors." 

The mean number of different primitive words of length p in the group 
~(~err we compute analytically in the forthcoming paper while below we 
present the main outline of these calculations. 

It is easy to understand that the number of nonequivalent primitive 
words V,(~, d = 2 ,  Porr) in the "locally free group with errors" can be 
calculated by means of averaging of Eq. (21) if we change slightly the 
matrix 2~, replacing it by the random matrix ~p]rr: 

fi A A A ... I.-1 I. 
fl  0 1 1 i . . .  I 1 

f2 1 0 1 1 . . .  i i 

~ =  f~ o o o 1 ... 1 1 
f4 0 0 1 0 . . .  1 1 

f , -a  0 0 0 0 0 1 

f ,  0 0 0 0 . . .  1 0 

(36) 
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where above the diagonal we put everywhere "1" and below diagonal we 
have 1 subdiagonal filled by "1" or by "0" with probabilities 1--P~rr and 
Perr correspondingly: in all other places we have "0." 

Thus, we arrive at the following final expression for the value 
( V.(/t, d = 2, Perr)) 

,u 

(V,,(/t,d=2, perr)) =2n+ ~ 2 ~ ( / t - l ) !  (R.(s,d)) (37) 
s = l  (S-- 1)! (/t --S)! 

where ( ... ) means the averaging over "the errors" with the distribution 
function of general form 

const 
~err__ ; (O~<oC< I) for j ~  [1, n] 

J /,/~ 

Let us mention that our arguments dealing with the words enumeration 
in the braid groups are based mainly on physical speculations supported by 
numerical simulations. The situation concerning the rigorous estimation of 
quantity braid by the V, (/t) is as follows: from above --braid, V, (/t) is bounded 
quantity V~(/t,d=2) while the lower boundary is supposed to be 
(V~(/t, d, 2, Perr))' The proof of this last inequality will be published 
separately. 

4. DISCUSSION 

It has been pointed out in Section 1.2 that the identification of the top 
and bottom ends of each braid produces the knot (link). The topological 
state of linked paths can be roughly characterized by the "knot (link) 
complexity," J/, extracted from rigorously defined algebraic knot invariants 
(see ref. 9 for details). Our further construction of mean-field theory of fluc- 
tuating entangled directed chain-like objects cannot be performed without 
knowing the entropy of ensemble of randomly generated closed braids of 
length N with fixed complexity t/. On the basis of Magnus matrix represen- 
tation of braid generators we found in ref. 9 that the link complexity t/is 
strictly proportional to the length of the shortest irreducible (primitive) 
word, /t, written in terms of braid group generators. In Appendix B we 
reproduce from refs. 9 and 5 the brief description of the "knot complexity" 
construction. 

Formally the problem of "knot (link) entropy" determination can be 
posed now as follows. Consider the ensemble of all knots produced by 
randomly generated braids of length N with fixed ends from the group B, 
and suppose the value of knot (link) complexity, q, to be given. Due to the 
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presence of topological constraints the entire phase space of knots (links) 
ensemble, 1"2, splits into disconnected domains, ~o{q}, (co ~ s of "topologi- 
cally similar" paths characterized by the link complexity t/. The entropy of 
chains with given r/one can write down formally as follows 

S{t/}-ln~o{q} =In ~, 6It/{ W(al,..., a~- ' )}- r / ]  (38) 
{o} 

where Wx(a~ ..... a #  ~) is the particular realization of the N-letter word 
written in terms of braid generators. 

Utilizing the relation ~/=/2, we could conclude that Eq. (9) describes 
the distribution function of knots with fixed "complexity" obtained by ran- 
domly generated braids from the group B n. The corresponding physical 
applications dealing with investigation of phase transition in the bunch of 
mutually entangled "directed polymers" will be published separately in II. 

Let us briefly repeat now the main conclusions of the present paper. 

1. The problem of the random walk on the braid group B n is investi- 
gated numerically and the expectation values for the mean value and the 
variance of the primitive word are compared to the same values of the ran- 
dom walk on the locally free group L f ~ .  

2. The problem of random walk on the group 5~ is considered 
analytically in two different ways: (i) using the direct approach dealing 
with "dynamics" of the words contraction in course of developing of the 
Markov chain on the locally free group, and (ii) by means of enumeration 
of all nonequivalent words of given length in the locally free group. It has 
been found that the dynamical consideration gives the results which being 
in perfect agreement with our numerical simulations, are in contradiction 
with the answers obtained by means of statistical approach. This conflict is 
partially resolved in Section 2.2 and is explained by the nonuniform struc- 
ture of the graph corresponding to the locally free group. We believe that 
the discrepancy between statistical and "dynamical" approaches found here 
has the same origin as in the conventional disordered systems: some very 
unprobable configurations give the non-negligible contribution to the equi- 
librium partition function. 

3. We propose a statistical method for enumeration the primitive 
words in the braid group Bn based on the consideration of "locally free 
groups with errors." The results of numerical simulations for the mean 
length of the primitive path of the random walk on the braid group and on 
the corresponding "locally free group with errors" with number of errors of 
order of 20 % are in very good agreement. In our forthcomming publi- 
cation ~9) we bring some arguments in support of conjecture that the 
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number of rather long primitive words in the braid group is not sensitive 
to precise local commutation relations. We suppose to discuss the connec- 
tion of the above-mentioned problems with the conventional random 
matrix theory, localization phenomena and statistics of systems with 
quenched disorder and to show the relation of the particular problems of 
random matrix theory to theory of modular functions. ~19) 

4. The computations of the entropy of entangled directed random 
walks performed in the present work should be applied for investigation of 
the ordering nematic-type phase transition in the bunch of entangled directed 
polymers under action of external field. We suppose to pay the main atten- 
tion to construction of the simple mean-field Flory-type theory of interacting 
braided random walks with nonabelian topology in 1 + 1 dimensions. 

5. We believe that the problem of discovering the integrable models 
associated with the proposed locally free groups and developing the corre- 
sponding conformal field theory could help to establish the bridge between 
statistics of random walks on the noncommutative groups, spectral theory 
on multiconnected Riemann surfaces and topological field theory. 

A P P E N D I X  A 

To calculate the eigenvalues of the matrix ~n - ~,,(d = 2) one has to 
solve the standard equation 

det[ ]0" - ),/~" ] = 0  (A.1) 

where/~" is the unit n x n matrix. 
Introduce minors 3"(2) and/~.(),) of the composite matrix ~ ' -  )'/~n as 

follows 

3,,(),) = 1 - 2  

1 --)' 

(A.2) 

Denote by a'(2) and b'(),) the determinants of matrices An(),) and/~'(),): 

an()') = det[A(),) ]; bn(),) = det[/~()')] (a.3) 
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Now we can easily write down the set of recursion relations for a~()`) 
and b~()`)(0 ~<k <~n) 

where 

ak()`) = --)`ak 1(2) -- bk_ 1()`) 
b k - , ( ) ` )  = ak 2()`) - -  bk 2()`) 

a k =  1()`) = --)`  

bk = 1(2) = 1 

(A.4) 

The solution of Eqs. (A.4) is 

ak() ` ) -  2 + p 2  p ~ +  ) ` + P '  p~ (A.5) 
P l  - P 2  P l  - - P 2  

P l , 2 = 1 ( - 1 - 2 + i ~ / ( 3 - 2 ) ( 1  + 2 ) )  (A.6) 

Taking into account the relation det ~n(2) = a,(2), we can rewrite the 
equation for eigenvalues (Eq. (A.1)) in simplified form 

a~()`) 1, =, = 0 (A.7) 

The solution of Eq. (A.7) is very straightforward 

3 - ) .  x/(3 - 2)(1 + 2 )  
tan narc tan  ~ / l + z ) =  2 -  1 (A.8) 

For  n ~ oo we get 2max= 3. TO find the highest eigenvalue )`max of 
matrix ~ ,  for large (n >> 1) but finite n let us search the solution in the form 

)`max = )` on~ax __ 8 (/~ ~ 0) (A.9) 

Substituting (A.9) into (A.8) we find the expression for )`max in terms of 
power series 

)`max = 3 + cl n l + C2 H --2 + O ( n  - 3 )  

where we calculated two first terms of expansion: c~ = 0 and c2 = -4~r  2. 
The eigenvalues of the matrix ~ . ( d =  3) can be calculated in the same 

way as of matrix ~ . ( d =  3), although the computations are more tedious. 
We can slightly modify the definition of the locally free group supposing 

that the new group depends on two parameters, c and d (0 < c < d -  1 ), and 
the commutation relations are as follows: 
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(a) Each pair (fi ,  fk) generates the free subgroup of the group if 
c< I j - k l  < d ;  

(b) f j f k  = f k ~  for [ j -  k[ ~< c and [ J -  kl >~ d 

The methods developed for the locally free group can be easily 
extended to the problem of primitive words enumeration for this new 
group. The only modification concerns the structure of  the matrix ~',(c, d), 
For  instance, for c = 1 and d = 3 we have 

~.(c = 1,d = 3) = 

~ ~ ~ ~ ... L-~ ~ 

0 1 1 1 . . . 1 1  

0 0 1 1 . . . 1 1  

~ 1 0 0 1 . . . 1 1  

~ 0 1 0 0 . . . 1 1  

i II i I i I i [ i [ " . 1  i , i 

~ _ a O 0 0 0 . . . O 1  

~ 0 0 0 0 . . . 0 0  

A P P E N D I X  B 

It  is known that the topological invariants of  knots can be characterized 
by the algebraic polynomials. The most  known are Jones, H O M F L Y  and 
Alexander invariants. (2~ The Alexander invariants allow the following 
description. (21) Write the generators of  the braid group in the so-called 
Magnus representation 

( i~ !) ('0 111 . .  1 0 0 

a j -  ~j = [ ]  ,-- j t h  row; A = - t  (B.1) 

�9 ' . 0 

�9 - -  0 

Now the Alexander polynomial  of the knot  represented by the closed 
W N braid = I-Is = 1 ~ j  of  length N one can write as follows 

( l + t + t 2 +  ... + t  n 1 ) V ( t ) { A } = d e t  t ~ - e  (B.2) 

where index j runs "along the braid", i.e., labels the number  of used gener- 
ators, while index ~ = { 1 ..... n - 1, n,..., 2n - 2} marks  the set of braid gener- 
ators ("letters") ordered as follows {al ..... ~,_1,o-~-1,...,a~_11}. In our 
further investigations we repeatedly address to that representation. 
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Let us stress that in general the minimal irreducible length of the 
braid, introduced above, is not related directly to any topological knot 
invariants but we show below that nevertheless the "primitive word" can be 
served as a well defined characteristic of the "knot complexity". The 
"primitive word" has the simple topological sense which can be expressed 
in the following necessary condition. If the "primitive word" of some closed 
braid of n strings has the unit length then this braid belongs to the "trivial" 
class and the corresponding knot is represented by a set of n disjoint unen- 
tangled trivial loops uniquely. 

We are interested in the limit behavior of knots or links invariants 
when the length of the corresponding braid tends to infinity, i.e., when the 
braid "grows." In that case we can rigorously define some more simple 
topological characteristics than the algebraic invariant which we call the 
"knot complexity." 

D e f i n i t i o n  1. Call the knot complexity, q, the power of some 
algebraic invariant, fK(t) (Alexander, Jones, HOMFLY) (see also refs. 9 
and 5) 

In fK(t) 
q=  lim (B.3) 

I~l ~ 0o In t 

Remark. By definition, the "knot complexity" takes one and the 
same value for rather broad class of topologically different knots corre- 
sponding to algebraic invariants of one and the same power, being from 
that point of view more weak topological characteristics than complete 
algebraic polynomial. 

Let us summarize the advantages of the quantity introduced in 
Eq. (B.3) with respect to the corresponding topological invariantfx(t): 

(i) One and the same value of t/ characterizes a narrow class of 
"topologically similar" knots which is however much broader than the class 
represented by the polynomial invariant X(t). This allows one to introduce 
the smoothed measures and distribution functions for q. 

(ii) The knot complexity ~/ describes correctly, (at least from the 
physical point of view) the limit cases: t/-- 0 corresponds to "weakly entangled" 
trajectories while t /~ N matches the system of "strongly entangled" paths. 
The later case has been discussed in details in ref. 5. 

(iii) The knot complexity keeps all nonabelian properties of the poly- 
nomial invariants. 

Our main goal in the paper concerns the estimation of the limit prob- 
ability distribution P(q, N) for the knots obtained by randomly generated 
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closed B:braids  of the length N. Let us stress that we essentially simplify 
the general problem "of the knot entropy." Namely, we insert an additional 
requirement that the knot should be represented by a braid from the group 
B 3 without fail. 

ACKNOWLEDGMENTS 

We are grateful to A. Comtet and S. Ouvry for useful discussions of 
the work and to Vik. Dotsenko for valuable critical remarks. S. N. would 
like to express his sincere thanks to A. M. Vershik with whom some related 
results have been obtained (see ref. 9) as well as to D. Parshin and M. Tsypin 
for important comments. 

REFERENCES 

1. A. R. Khokhlov and A. N. Semenov, Physica A 108:546 (1981); 112:605 (1982). 
2. J. V. Seilinger and R. F. Bruinsma, Phys. Rev. A 43:2910, 2922 (1991). 
3. J. Desbois and S. Nechaev, paper in preparation 
4. A. Yu. Grosberg and A. R. Khokhlov, Statistical Physics of  Macromolecules (AlP Press, 

New York, 1994). 
5. S. K. Nechaev, Statistics of  Knots and Entangled Random Walks (WSPC, Singapore, 

1996). 
6. H. Kesten, Trans. Amer. Math. Soc. 92:336 (1959). 
7. A. M. Vershik, in Topics in Algebra 26, pt.2, 467 (1990) (Banach Center Publication, 

PWN Publ., Warszawa); Proc. Am. Math. Soc. 148:1 (1991). 
8. S. Nechaev and Ya. G. Sinai, Bol. Soc. Bras. Mat. 21:121 (1991). 
9. S. K. Nechaev, A. Yu. Grosberg, and A. M. Vershik, J. Phys. A: Math. Gen. 29:2411 

(1996). 
10. P. Chassaing, G. Letac, and M. Mora, in Probability Measures on Groups, Lect. Not. 

Math., 1064 (1983). 
11. Ya. G. Sinai, Introduction to Ergodic Theory (Princeton Univ. Press, Princeton, N J, 1977). 
12. M. Gutzwiller, Chaos in Classical and Quantum Mechanics (Springer, N.Y., 1990). 
13. H. Fiirstenberg, Trans. Am. Math. Soc 198:377 (1963); V. Tutubalin, Prob. Theor. Appl. 

10:15 (1965), (in Russian). 
14. L. Koralov, S. Nechaev, and Ya. Sinai, Prob. Theor. AppL 38:331 (in Russian). 
15. A. Khokhlov, S. Nechaev, Phys. Lett. A 112:156 (1985). 
16. S. Nechaev, A. Semenov, and M, Koleva, Physica A 140:506 (1987). 
17. S. Nechaev and A. Vershik, J. Phys. A: Math. Gen. 27:2289 (1994). 
18. E. Bogomolny and M. Carioli, Physica D 67:88 (1993). 
19. A. Comtet and S. Nechaev, paper in preparation. 
20. L. H. Kauffman, Knots in Physics (WSPC, Singapore, 1994). 
21. J. Birman, Knots, Links and Mapping Class Groups, Ann. Math. Stud., 82 (Princeton Univ. 

Press, Princeton, NJ, 1976). 


